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LETTER TO THE EDITOR 

Derivation of the time-dependent propagator for the 
three-dimensional Schrodinger equation with 
one point interaction 

S Scarlatti and A Teta 
Institut fur Mathematik, Ruhr-Universitat Bochum, 4630 Bochum 1, Federal Republic of 
Germany 

Received 24 July 1990 

Abstract. An explicit formula for the time-dependent propagator of the Schrodinger 
equation with one point interaction in three dimensions is given. The derivation is based 
on the inverse Laplace transformation applied to the corresponding resolvent. 

Recently Gaveau and Schulman [ 3,6] have derived the time-dependent propagator 
for the one-dimensional Schrodinger equation with one point interaction (see also 
[4]). Here we extend their result to the corresponding three-dimensional problem. 

It is well known that the Schrodinger Hamiltonian H, with a point interaction of 
strength a ER, placed at the origin of R3, can be rigorously constructed as a lower- 
bounded and self-adjoint operator in L2(R’)  using various techniques (see, e.g., [ 11 
and references therein). 

For the convenience of the reader we report the explicit formula for the integral 
kernel of the resolvent of Ha 

( H, + A ) - I  ( X, x’) = GA ( x - x’) + a + - GA ( x’) GA ( x ) ( 3 - I  

where x, X’E R3\{O}, x # x’, and GA is the integral kernel of the free resolvent defined 
as 

d q x - x ~ l  

4 ~ 1 ~  - x‘/ G ~ ( X - X ’ ) =  e x # XI. (2) 

Formula ( 1 )  holds in particular for A > 0, except for A = ( 4 ~ a ) ’  if a < 0. 
From (1) the spectral properties of Ha are easily derived. The continuous spectrum 

of Ha is purely absolutely continuous and coincides with the interval [0, +CO) while 
the point spectrum is empty if a 2 0 and { - ( 4 ~ a ) ~ }  if a < 0. The normalized eigenfunc- 
tion associated with the negative eigenvalue is given by 

For a = 0 the Hamiltonian exhibits a zero-energy resonance. 
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K ,  (x, x’; t )  = 4 

The result of this letter is the following: Let 
e-Ix-x‘12/4ir 

K ( x ,  x‘; t )  t > O  X,X’ER3 
( 4 ~ i  t)3’2 

x K (  U + 1x1 +(XI(, 0; t )  du 
2i t 

for a > 0  

for a = 0  K(x,x’;  t)+---K(lxl+\x’l,O; t )  

~ ( x ,  x’; ~)+v,(x)v,(x’) e”(4ma)2 
1x1 lx’l 

and 

\ for a < 0 

then for every f~ L2(R3) 

(e-””-f)(x) = lim dx’f(x’)K,(x, x’; t )  

(4) 

where the limit in (6) is taken in the L2 sense. 

Proof: Taking the inverse Laplace transform of the resolvent (1) we can compute the 
semigroup generated by Ha 
(e-=”-f)(x) = L - ’ [ ( ( H a  + *)-’f)(x)l(z) 

dx’f(x’)L-’[ ( H, + *)-‘(x, x’)]( Z )  
= 1 . 3  

exp[-( lxl+1~’1)~/4~]-47~a 

xexp[-(u+Ixl+1~’1)~/4z] 

where % z  > 0 and L-’ denotes the inverse Laplace transformation. The last equality 
in (7) has been obtained using equations (29.3.82), (29.3.88) and (7.4.2) of [2]. We 
now distinguish three cases. 

Case a = 0. Using the standard Y E ’  trick (see, e.g., [ 5 ]  p 59) from (7) we immediately 
get formula (6). 

Case a>0. Integrating by parts in (7) we obtain 

1 exp[ -( U + 1x1 + I x ’ ~ ) ’ / ~ z ]  
(4TZ)3/2 

xexp(-4.rrcuu)(u+Ixl+Ix’l) 

and then we proceed as in the previous case. 
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Case a <O. The convergence of the last integral in (7) could now seem problematic. 
However, extracting the specific contribution of the bound state (3) ,  we get 

m a 
du exp( - 4 ~ a u )  exp[ -( U + 1x1 + / x ’ ( ) ~ / ~ z ]  

i x i w w 1 / 2  Jb 
a: 

= - q a ( x ) q Q ( x ’ )  exp(z(4~a) ’ ) -  
1x1 lX’l(TZ)1’2 

x e x p ( 4 ~ a u )  exp[-(u - 1x1 - x’1)’/4z]. 

Jo* d u  

(9) 

Substituting (9) in (7)  and using again the ‘iE’ trick we get (6 ) ,  concluding the 
proof. 0 

To conclude we remark that, following the line of [ 6 ] ,  formula (6) can be used to 
describe the explicit time evolution of a wavepacket, e.g., a Gaussian wavepacket, 
comparing it with the usual time-independent scattering theory and, moreover, to 
investigate the meaning of the semiclassical approximation for H, . 
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